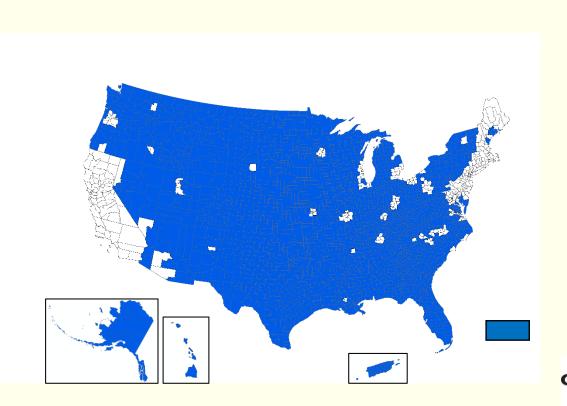
### MOVES-Matrix Running Module Quick Start Guide

Randall Guensler Haobing Liu Hongyu Lu

Georgia Institute of Technology School of Civil and Environmental Engineering



### **Quick Start Guide**


- Slides provide a quick start guide for using the MOVES-Matrix running module to analyze project-level emissions
  - For experienced MOVES modelers
- Emission rates are derived from MOVES2014b project-level runs iterated across input variables
- The accompanying data files specifically reflect:
  - The five regions' MOVES default fuel supply
  - The five regions' MOVES default I/M program



### **MOVES-Matrix Background**

- MOVES-Matrix provides fuel consumption and running exhaust emissions for project-level analyses and county-level runs
- The MOVES-Matrix database is populated with the results from more than 100,000 iterative MOVES runs
- MOVES-Matrix yields the exact same values obtained by running MOVES, but runs in a fraction of the time
- Users apply specific emission rates to each link in the transportation network via a scripting process

#### MOVES-Matrix Current Coverage (Updated Sep 2021)





### **Python is Required for MOVES-Matrix**

- Install Python 2.7 on your computer
- Option 1 (recommended)
  - Install Anaconda2 (for python2.7) (which includes needed modules)
  - https://www.continuum.io/downloads
- Option 2
  - Install Python
  - Add required modules (csv, os, math, time, sys, and pandas)



# Six File Sets are Provided in the "MOVES-Matrix" Folder

- MOVES-matrix Python program
  - moves\_matrix\_py27\_113018.py
- Batch mode allocation spreadsheet
  - batchmode.csv
- MOVES-Matrix emission rate database
  - MatrixData
- Input CSV files in the 'input' folder
  - Standard set of MOVES input files
- Output CSV files in the 'output' folder
  - Emission inventory and emission rates
- OpMode Distribution from MOVES default cycles
  - default\_opmode\_project.csv



### **Change the Python Directory Paths**

- Edit the Python code
  - Use Spyder if you installed Anaconda, or
  - Use any standard text editor (e.g., notepad)
- In the first lines, set the path for your MOVES-Matrix working directory and your database directory:

## this path may need to be changed to locate matrix working directory
path = "E:\\MMatrix\_Running Module"
## this path may need to be changed to locate matrix database directory
matrixdatapath = "E:\\MMatrix\_Running Module\\MatrixData"



## Running MOVES-Matrix

Step 1: Prepare input files (can be scripted)

Step 2: Set up batch mode tasks

**Step 3: Start the Python program** 



- Prepare input files in 'input' folder as if running MOVES at the project level
  - csv files for link information
     Same as the MOVES link input module
  - csv files for link source type distribution
     Same as MOVES linksourcetypehour input module
  - csv files for age distribution
     Same as the MOVES sourcetypeagedistribution input module

- Prepare input files in the 'input' folder as if running MOVES at project level
  - csv files for meteorology information
     Same as the MOVES meteorology input module
    - Set temperature between 10-110°F in 5°F bins (10,15,20...)
    - Set humidity between 0-100% in 5% bins (0,5,10...)



11

- Prepare input files in the 'input' folder as if running MOVES at the project level
  - csv files for operating information
     If you use customized operating input data
    - OpMode distributions, similar to the opmodedistribution module in MOVES (see slide 16 for details)
    - Or, drive schedules, same as driveschedulesecondlink input module in MOVES
- You don't need to prepare operating input, if you want to obtain emissions based on MOVES default driving cycles (default\_opmode\_project.csv is applied here)

- Modeled transportation links (link module)
- Source type distributions (linksourcetypehour module)
- Fleet age (sourcetypeagedistribution module)
- Meteorology (meteorology module)
- Operating mode distributions
   If you use customized operating inputs
  - opmodedistribution module
  - driveschedulesecondlink module



### **Prepare the Link File**

- Modeled transportation links
  - linkID: link ID

| linkID | countyID | zoneID | roadTypeID | linkLength | linkVolume | linkAvgSpeed | linkDescription    | linkAvgGrade |
|--------|----------|--------|------------|------------|------------|--------------|--------------------|--------------|
| :      | l 13121  | 131210 | 4          | 10         | 1200       | 55           | Urban restricted   | 0            |
|        | 13121    | 131210 | 5          | 5          | 600        | 20           | Urban unrestricted | 0            |

- countyID: county ID (not used in MOVES-Matrix)
- zoneID: zone ID (not used in MOVES-Matrix)
- roadTypeID: road type ID (needed for MOVES default cycle)
- linkLength: link length in mile
- linkVolume: link volume in # of vehicles
- linkAvgSpeed: link average speed in mph Not needed if driving schedule is provided)
- linkDescrption: link description (not used)
- linkAvgGrade: link road grade (not used)



### **Prepare Source Type and Age Distributions**

#### Source type distributions

- linkID: link ID
- sourceTypeID: source use type ID
- sourceTypeHourFraction: operating time fraction (usually sum to 1 within each link)

#### • Age distributions

- sourceTypeID: source use type ID
- yearID: calendar year
- ageID: vehicle age in years
- ageFraction: fleet age fraction (usually sum to 1 within each source type)

| linkID | sourceTypeID | sourceTypeHourFraction |
|--------|--------------|------------------------|
| 1      | 11           | 0.028857869            |
| 1      | 21           | 0.453908367            |
| 1      | 31           | 0.311555405            |
|        |              |                        |

| sourceTypeID | yearID | ageID | ageFraction |
|--------------|--------|-------|-------------|
| 11           | 2014   | 0     | 0.071822023 |
| 11           | 2014   | 1     | 0.068843178 |
| 11           | 2014   | 2     | 0.06477528  |
| 11           | 2014   | 3     | 0.051962457 |
| 11           | 2014   | 4     | 0.046925796 |
| 11           | 2014   | 5     | 0.048601487 |
| 11           | 2014   | 6     | 0.086120656 |
| 11           | 2014   | 7     | 0.076624358 |
| 11           | 2014   | 8     | 0.072596604 |



### **Prepare Meteorology Inputs**

#### Meteorology

- monthID: month (1-12)
- zoneID: zone ID (not used)
- hourID: hour (0-23, not used)
- temperature: in F
  - > Set temperature between 0-110°F in 5°F bins (0,5,10...)
- relHumudity: in %
  - > Set humidity between 0-100% in 5% bins (0,5,10...)



| monthID | zoneID | hourID | temperature | relHumidity |
|---------|--------|--------|-------------|-------------|
| 1       | 131210 | 9      | 45          | 60          |

### Prepare Operating Mode Inputs OpMode Distribution or Drive Schedule

#### opmodedistribution

- sourceTypeID: source use type ID
- linklD: link ID
- opModeID: operating mode bin
- opModeFraction: fraction of operating mode bin (usually sum to 1 within each source type and link)
- driveschedulesecondlink
  - linkID: link ID
  - secondID: time series (seconds from start)
  - speed: second-by-second speed (mph)
  - grade: second-by-second road grade (%)

| sourceTypeID | linkID | opModeID | opModeFraction |
|--------------|--------|----------|----------------|
| 11           | 1      | 0        | 0.04932        |
| 11           | 1      | 1        | 0.013572       |
| 11           | 1      | 11       | 0.019541       |
| 11           | 1      | 12       | 0.01788        |
| 11           | 1      | 13       | 0.007915       |

| linkID | secondID | speed | grade |  |
|--------|----------|-------|-------|--|
| 1      | 0        | 46.7  | 0     |  |
| 1      | 1        | 46.9  | 0     |  |
| 1      | 2        | 47.2  | 0     |  |
| 1      | 3        | 47.8  | 0     |  |
| 1      | 4        | 48.2  | 0     |  |
| 1      | 5        | 49    | 0     |  |



### Step 2: Set Up Batch Mode Tasks

- Open batchmode.csv in the 'MOVES-Matrix' directory
- Fill in corresponding input file names within each row
  - Each row represents one task
- Users may enter input file name with or without the '.csv' extension



### **Preparing Batch Mode Tasks File**

| task | D region  | calendarYear | meteorologyFileName          | sourceTypeDistributionFileName  | ageDistributionFileName  | linkFileName       | driveSchedule/OpModeDistribution | opmode(o)/cycle(d)/speed(v) |
|------|-----------|--------------|------------------------------|---------------------------------|--------------------------|--------------------|----------------------------------|-----------------------------|
| i i  | 0 atlanta | 2014         | meteorology_ATL_13121_07.csv | sourceTypeDistribution_2014.csv | ageDistribution_2014.csv | link_ATL_13121.csv |                                  | v                           |
| !    | 1 atlanta | 2014         | meteorology_ATL_13121_07.csv | sourceTypeDistribution_2014.csv | ageDistribution_2014.csv | link_ATL_13121.csv | drivingCycle.csv                 | d                           |
|      | 2 atlanta | 2014         | meteorology_ATL_13121_07.csv | sourceTypeDistribution_2014.csv | ageDistribution_2014.csv | link_ATL_13121.csv | opModeDistribution_MOVESMatrix   | o                           |
| 1    | 3 atlanta | 2018         | meteorology_ATL_13121_07.csv | sourceTypeDistribution_2018.csv | ageDistribution_2018.csv | link_ATL_13121.csv |                                  | v                           |
|      | 4 atlanta | 2018         | meteorology_ATL_13121_07.csv | sourceTypeDistribution_2018.csv | ageDistribution_2018.csv | link_ATL_13121.csv | drivingCycle.csv                 | d                           |
| i    | 5 atlanta | 2018         | meteorology_ATL_13121_07.csv | sourceTypeDistribution_2018.csv | ageDistribution_2018.csv | link_ATL_13121.csv | opModeDistribution_MOVESMatrix   | o                           |

- taskID: task ID, similar to MOVESRunID in MOVES
- region: enter one of the five regions:
  - denver, atlanta, buffalo, dc, seattle
- calendarYear: calendar year
- meteorologyFileName: meteorology csv input file
- sourceTypeDistributionFileName: source type distribution input file



### **Preparing the Batch Mode Tasks File**

| task | D region  | calendarYear | meteorologyFileName          | sourceTypeDistributionFileName  | ageDistributionFileName  | linkFileName       | driveSchedule/OpModeDistribution    | opmode(o)/cycle(d)/speed(v) |
|------|-----------|--------------|------------------------------|---------------------------------|--------------------------|--------------------|-------------------------------------|-----------------------------|
|      | 0 atlanta | 2014         | meteorology_ATL_13121_07.csv | sourceTypeDistribution_2014.csv | ageDistribution_2014.csv | link_ATL_13121.csv |                                     | v                           |
|      | 1 atlanta | 2014         | meteorology_ATL_13121_07.csv | sourceTypeDistribution_2014.csv | ageDistribution_2014.csv | link_ATL_13121.csv | drivingCycle.csv                    | d                           |
|      | 2 atlanta | 2014         | meteorology_ATL_13121_07.csv | sourceTypeDistribution_2014.csv | ageDistribution_2014.csv | link_ATL_13121.csv | opModeDistribution_MOVESMatrix      | 0                           |
|      | 3 atlanta | 2018         | meteorology_ATL_13121_07.csv | sourceTypeDistribution_2018.csv | ageDistribution_2018.csv | link_ATL_13121.csv |                                     | v I                         |
|      | 4 atlanta | 2018         | meteorology_ATL_13121_07.csv | sourceTypeDistribution_2018.csv | ageDistribution_2018.csv | link_ATL_13121.csv | drivingCycle.csv                    | d                           |
|      | 5 atlanta | 2018         | meteorology_ATL_13121_07.csv | sourceTypeDistribution_2018.csv | ageDistribution_2018.csv | link_ATL_13121.csv | opModeDistribution_MOVESMatrix      | 0                           |
|      | Jatianta  | 2010         | meteorology_ATE_15121_07.03V | sourcerypebistribution_2010.csv | agebistribution_2010.csv | 111K_ATE_15121.05V | opiniodebistribution_iniovesinatity | 0                           |

- ageDistributionFileName: age distribution input file
- linkFileName: link input file
- driveSchedule/opModeDistributionFileName: drive schedule file <u>or</u> opMode distribution file
- opmode(o)/cycle(d)/speed(v):
  - 'd' if drive schedule is used
  - 'o' if opmode distribution is used
  - 'v' to apply MOVES default cycles



### opmode(o)/cycle(d)/speed(v) Method

- If 'd' is chosen: drive schedule input is needed
- If 'o' is chosen: opmode distribution input is needed.
   Average speed in link input file is needed
- If 'v' is chosen: average speed and road type ID is needed in link input file (no operating inputs needed)
  - Average speed: choose from 1-80 mph in 0.1 mph interval
  - Road type ID: 2-Rural restricted access, 3-Rual unrestricted access, 4-Urban restricted access, 5-Urban unrestricted access



### **Step 3: Start the Python Program**

- Run the program moves\_matrix\_py27\_113018.py
- Option 1: Use Anaconda (recommended):
   Use Spyder to open python code, click b to run
- Option 2: Run python code through command line Change directory to MOVES-Matrix folder path, type 'python moves\_matrix\_py27\_113018.py' and press ENTER



### **Calculation Process**

- Program takes several seconds to finish calculations
- Status of each task is shown on the program screen

| ۵ | Console 1/A 🔀                                                                                                                                                                                                                                                                                                                                                  | ⊀ | QL |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----|
| 1 | In [4]: runfile('E:/MOVES-Matrix/denver_matrix_py34_030617.py', wdir='E:/MOVES-Matrix')<br>Let's hang out with MOVES-Matrix.<br>This version is for Denver, updated on March 6, 2016.<br>It can be used for the following counties in Colorado State:<br>Adams, Arapahoe, Boulder, Broomfield, Denver, Douglas, Jefferson.                                     |   | ^  |
| 1 | starting task1<br>The database Denver_2012_1_35_80 is used. The input temperature is 35.0F, and input Humidity is set as 80.0%.<br>second-by-second schedule is imported for vehicle operation<br>exporting result for task1<br>tarting task2<br>The database Denver_2012_1_35_80 is used. The input temperature is 35.0F, and input Humidity is set as 80.0%. |   |    |
|   | second-by-second schedule is imported for vehicle operation<br>exporting result for task2                                                                                                                                                                                                                                                                      |   |    |



### **Visually Verify Input File Information**

- For each task, MOVES-Matrix grabs a specific emission rate table from the matrix database, based upon region, calendar year (in batchmode.csv), month, and meteorology (in meteorology input file)
- The database table that will be used in the each task analysis is displayed on the program screen.

Starting task1
The database Denver 2012 1 35 80 is used. The input temperature is 35.0F, and input Humidity is set as 80.0%.
second-by-second schedule is imported for vehicle operation...
Exporting result for task1...
Starting task2
The database Denver\_2012 1\_35\_80 is used. The input temperature is 35.0F, and input Humidity is set as 80.0%.
second-by-second schedule is imported for vehicle operation...
Exporting result for task2...

School of Civil & Environmental Engineering

### **Files Generated**

- The output file in the working directory will contain four csv files generated by the Python script
  - taskX\_emissionbylink.csv
  - taskX\_emissionbylinksource.csv
  - X is the task number defined in batchmode.csv



### **Output Tables**

#### • taskX\_emissionbylink.csv

- Column[emquant]: Emissions and energy consumption (g or KJ) for each link in each task (similar to MOVES results in the 'movesoutput' table)
- Column[emrate]: Emission and energy consumption rates (g/mile or KJ/mile) for each link in each task (similar to MOVES results in the 'rateperdistance' table)



### **Output Tables**

#### taskX\_emissionbylinksource.csv

- Column[emquant]: Emissions and energy consumption (g or KJ) for each source type within each link in each task (similar to MOVES results in the 'movesoutput' table when disaggregated by source type)
- Column[emrate]: Emission and energy consumption rates (g/mile/vehicle or KJ/mile/vehicle) for each source type within each link in each task



### **Scripting Input Files to Handle Network Runs**

- Users can create input files using Python or Perl for simulation model runs or complex corridor analysis
  - Example: Atlanta Travel Demand Model: 74,000+ links
     Obtain volume and speed for each link and assign corresponding operation and fleet composition
- When drive schedule mode is used, all vehicles on the link are assigned the drive schedule provided
- When opmode distribution mode is used, each source type can be assigned a different opmode distribution on each link
- When MOVES default cycle mode is used, all vehicles on a link are assigned the same average speed
   Georgia
   College of

1 & Environmental Engineering

### **MOVES-Matrix Quick Start Summary**

- The Georgia Tech research team has provided:
  - MOVES-Matrix database for five regions
  - MOVES-Matrix Python scripts
- MOVES users can easily implement MOVES-Matrix
  - Very fast, high-resolution modeling runs
  - Users can develop scripts to create input files
  - Users can script multiple runs



### References

- Guensler, R., H. Liu, X. Xu, Y. Xu, and M.O. Rodgers (2016). MOVES-Matrix: Setup, Implementation, and Application. 95th Annual Meeting of the Transportation Research Board. Washington, DC. January 2016
- Xu, X., H. Liu, Y. Xu, M. Hunter, M.O. Rodgers and R. Guensler (2016). Estimating Project-Level Vehicle Emissions with VISSIM and MOVES-Matrix. Transportation Research Record, No. 2570, pp. 107-117.
- Liu, H., R. Guensler, H. Lu, Y. Xu, X. Xu, and M.O. Rodgers (2019). MOVES-Matrix for High-Performance On-Road Energy and Running Emission Rate Modeling Applications. Journal of the Air & Waste Management Association, July 2019, 10962247.2019.1640806. https://doi.org/10.1080/10962247.2019.1640806.
- Liu, H., X. Xu, M.O. Rodgers, Y. Xu, R. Guensler (2017). MOVES-Matrix and Distributed Computing for Microscale Line Source Dispersion Analysis. Journal of the Air & Waste Management Association. http://dx.doi.org/10.1080/10962247.2017.1287788.
- Guensler, R., H. Liu, Y. Xu, A. Akanser, D. Kim, M. Hunter and M.O. Rodgers (2017). Energy Consumption and Emission Modeling of Individual Vehicles Using MOVES-Matrix. Transportation Research Record, No. 2627, pp. 93-102.
   Georgia

Tech

Engineering School of Civil & Environmental Engineering

### **Questions:**

- Hongyu Lu LHY@gatech.edu
- Randall Guensler randall.guensler@ce.gatech.edu

• Please send questions by e-mail to both of us

